A molecular Debye-Hückel theory and its applications to electrolyte solutions: The size asymmetric case
نویسندگان
چکیده
منابع مشابه
A molecular Debye-Hückel theory and its applications to electrolyte solutions: The size asymmetric case.
A molecular Debye-Hückel theory for electrolyte solutions with size asymmetry is developed, where the dielectric response of an electrolyte solution is described by a linear combination of Debye-Hückel-like response modes. As the size asymmetry of an electrolyte solution leads to a charge imbalanced border zone around a solute, the dielectric response to the solute is characterized by two types...
متن کاملA Molecular Debye-Hückel Theory and Its Applications to Electrolyte Solutions
In this report, a molecular Debye-Hückel theory for ionic fluids is developed. Starting from the macroscopic Maxwell equations for bulk systems, the dispersion relation leads to a generalized Debye-Hückel theory which is related to the dressed ion theory in the static case. Due to the multi-pole structure of dielectric function of ionic fluids, the electric potential around a single ion has a m...
متن کاملDensity fluctuations in an electrolyte from generalized Debye-Hückel theory.
Near-critical thermodynamics in the hard-sphere (1, 1) electrolyte is well described, at a classical level, by Debye-Hückel (DH) theory with s1, 2d ion pairing and dipolar-pair-ionic-fluid coupling. But DH-based theories do not address density fluctuations. Here density correlations are obtained by functional differentiation of DH theory generalized to nonuniform densities of various species. T...
متن کاملAsymmetric primitive-model electrolytes: Debye-Hückel theory, criticality, and energy bounds.
Debye-Hückel (DH) theory is extended to treat two-component size- and charge-asymmetric primitive models, focusing primarily on the 1:1 additive hard-sphere electrolyte with, say, negative ion diameters a(--) larger than the positive ion diameters a(++). The treatment highlights the crucial importance of the charge-unbalanced "border zones" around each ion into which other ions of only one spec...
متن کاملInteraction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.
We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2017
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4978895